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Guttman Scaling

Hervé Abdi

1 Introduction

Guttman scaling was developed by Louis Guttman (1944, 1950) and
was first used as part of the classic work on the American Soldier.
Guttman scaling is applied to a set of binary questions answered
by a set of subjects. The goal of the analysis is to derive a single
dimension that can be used to position both the questions and the
subjects. The position of the questions and subjects on the dimension
can then be used to give them a numerical value. Guttman scaling
is used in social psychology and in education.

2 An example of a perfect Guttman scale

Suppose that we test a set of Children and that we assess their
mastery of the following types of mathematical concepts: 1) counting
from 1 to 50, 2) solving addition problems, 3) solving subtraction
problems, 4) solving multiplication problems, and 5) solving division
problems.
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Table 1: The pattern of responses of a perfect Guttman scale. A value of 1 means that the child
(row) has mastered the type of problem (column), a value of 0 means that the child does not
master the type of problem.

Problems

Children Counting Addition Subtraction Multiplication Division

S1 1 0 0 0 0
S2 1 1 0 0 0
S3 1 1 1 0 0
S4 1 1 1 1 0
S5 1 1 1 1 1

Some children will be unable to master any of these problems,
and these children do no provide information about the problems so
we will not consider them. Some children will master counting but
nothing more, some will master addition and we expect them to have
mastered addition but no other concepts; some children will master
subtraction and we expect them to have mastered counting and ad-
dition; some children will master multiplication and we expect them
to have mastered subtraction, addition, and counting. Finally, some
children will master division problem and we expect them to have
mastered counting, addition, subtraction, and multiplication. What
we do not expect to find, however, are children, for example, who
have mastered division but who have not mastered addition or sub-
traction or multiplication. So the set of patterns of responses that
we expect to find is well structured and is shown in Table 1. The
pattern of data displayed in this figure is consistent with the exis-
tence a single dimension of mathematical ability. In this framework,
a child has reached a certain level of this mathematical ability and
can solve all the problems below this level and none of the problems
above this level.

When the data follow the pattern illustrated in Table 1, the rows
and the columns of the table can both be represented on a single
dimension. The operations will be ordered from the easiest to the
hardest and a child will be positioned on the right of the most dif-
ficult type of operation solved. So the data from Table 1 can be
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represented by the following order:

Counting S1 Addition S2 Subtraction S3 Multiplication S4 Division S5 .
(1)

This order can be transformed into a set of numerical values by
assigning numbers with equal steps between two contiguous points.
For example, this set of numbers can represent the numerical values
corresponding to Table 1:

Counting S1 Addition S2 Subtraction S3 Multiplication S4 Division S5

1 2 3 4 5 6 7 8 9 10

This scoring scheme implies that the score of an observation (i.e., a
row in Table 1) is proportional to the number of non-zero variables
(i.e., columns in Table 1) for this row.

The previous quantifying scheme assumes that the differences in
difficulty are the same between all pairs of contiguous operations. In
real applications, it is likely that these differences are not the same.
In this case, a way of estimating the size of the difference between two
contiguous operations is to consider that this difference is inversely
proportional to the number of children who solved a given operation
(i.e., an easy operation is solved by a large number of children, a
hard one is solved by a small number of children).

2.1 How to order the rows of a matrix to find the scale

When the Guttman model is valid, there are multiple ways of finding
the correct order of the rows and the columns which will give the
format of the data as presented in Table 1. The simplest approach
is to re-order rows and columns according to their marginal sum.
Another theoretically interesting procedure is to use correspondence
analysis (which is a type of factor analysis tailored for qualitative
data) on the data table, then the coordinates on the first factor of
the analysis will provide the correct ordering of the rows and the
columns.
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3 Imperfect scale

In practice, it is rare to obtain data that perfectly fit a Guttman
scaling model. When the data do not conform to the model, one
approach is to relax the uni-dimensionality assumption and to as-
sume that the underlying model involves several dimensions. Then,
these dimensions can be obtained and analyzed with multidimen-
sional techniques such as correspondence analysis (which can be
seen as a multidimensional generalization of Guttman scaling) or
multidimensional scaling. Another approach is to consider that the
deviations from the ideal scale are random errors. In this case, the
problem is to recover the Guttman scale from noisy data. There are
several possible ways to fit a Guttman scale to a set a data. The
simplest method (called the Goodenough-Edwards method) is to or-
der the rows and the columns according to their marginal sum. An
example of a set of data corresponding to such an imperfect scale is
given in Table 2. In this table the “errors” are indicated with a ∗,
and there are three of them. This number of errors can be used to
compute a coefficient of reproducibility denoted CR and defined as

CR = 1 − Number of errors

Number of possible errors
. (2)

The number of possible errors is equal to the number of entries in the
data table which is equal to the product of the numbers of rows and
columns of this table. For the data in Table 2, there are three errors
out of 5 × 6 = 30 possible errors, this gives a value of the coefficient
of reproducibility equal to

CR = 1 − 3

30
= .90 . (3)

According to Guttman, a scale is acceptable if it contains less than
10% of erroneous entry which is equivalent to consider that a scale
is acceptable if the value of its CR is equal to or larger than .90.
In practice, it is often possible to improve the CR of a scale by
eliminating rows or columns which contain a large proportion of
errors. Unfortunately, this practice may also lead to capitalize on
random errors and may give and unduly optimistic view of the actual
reproducibility of a scale.
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Table 2: An imperfect Guttman scale. Values with a ∗ are considered errors. Compare with Table
1 showing a perfect scale.

Problems

Children Counting Addition Subtraction Multiplication Division Sum

C1 1 0 0 0 0 1
C2 1 0∗ 1∗ 0 0 2
C3 1 1 1 0 0 3
C4 1 1 0∗ 1 0 3
C5 1 1 1 1 1 5

Sum 5 3 3 2 1 —

Related entries

Canonical correlation analysis, correspondence analysis, categorical
variables, Likert scaling, Principal component analysis, Thurstone
scaling.
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